
Modbus in MAC400/800

The modbus implementation in MAC400/800 is a subset of the Modbus Specification V1.1b. This
standard can be downloaded free of charge from the website www.modbus.org.

The serial communications lines normally used for communications between the basic motor and
one of the intelligent MAC00-XX modules, can be configured to use the Modbus protocol instead
of the standard FastMac protocol.

The MAC400/800 firmware supports the two command types Read Holding Registers (3) and Write
Multiple Register (0x10). All other commands will result in Exception replies (exception type 1,
Illegal Function).

All registers can be read as well as written over Modbus, but the number of registers per transfer is
limited to 16 16-bit registers or 8 32-bit registers. Contact JVL if more registers are needed in a
single transfer.

All registers in the MAC400/800 motors are 32-bits. To comply with the clean 16-bit Modbus
standard, a 32-bit register must be read or written as two consecutive 16-bit registers.
The register address mapping follows the normal documented register numbers but the address
field, but must be multiplied by two, so to read or write register 3, P_SOLL, use the address 6.

The setup of the Modbus protocol is part of the general setup of the UART.

Register 213, UART1_SETUP, supports the following bit-fields:

Bits Values Description
3:0 0=9600,

1=19200,
2=38400,
3=57600,
4=115200,
5=230400,
6=444444,
7=1000000 baud

Basic baud rate in bits per second. For regular passive
server operations, any of these rates can be used. For
Client operation, the bit rate must be 1Mb (value=7).
Note that values 6 and 7 are non-standard baud rates, that
are intended to be used between two or more
MAC400/800 motors only.

7:4 0=FastMac,
1=Modbus

Protocol to use – select 1 for Modbus

9:8 0=5,
1=6,
2=7,
3=8 data bits

Number of data bits in a byte. Modbus always uses 8 bits
per byte.

10 Must be zero
13:11 0=Even,

1=Odd,
2=Space,
3=Mark,
4 or 5=None
6 or 7=Multidrop

Parity scheme. Modbus should use either Even or Odd
parity for maximum error checking. Multidrop is not
supported by Modbus.

15:14 0=1,
1=1.5,
2=2 stop bits

Number of stop bits to use.

23:16 0..255 Guard-time. Number of idle bit times between bytes
during transmission. These can be seen as additional stop
bits. Normally this value is set to zero, but with some
UARTs that have trouble synchronizing on long
telegrams, this value can be set to non-zero. Setting this
value non-zero may help with visually separating bytes
on an oscilloscope.

25:24 0=Passive server,
1=Active server with
timeout monitoring.
2=Client (bus master)
operation to transfer
requested position and
monitor errors.

For normal operation where a PC or PLC talks to one or
more motors, set this to zero.
If set to One, the motor will set a Communications Error
and stop if it has not received a valid write request to
P_SOLL within the timeout selected in bits 31:28.
If set to two, the motor will write a position and read the
error/status register of the client at address 254 once per
sample period. If not both write acknowledge and
error/status data is received within the timeout specified
in bits 31:28, the motor will set a Communications error
and stop.

27:26 Reserved
31:28 Timeout in milliseconds.

The firmware will use only the power-up value of register 213, so for any changes to take effect, do
a Save in Flash operation.

Read Holding operation:

Request: <adr>, 0x03, RegHi, RegLo, CountHi, CountLo, CRC1, CRC2
Offset: [0] [1] [2] [3] [4] [5] [6] [7]
Reply: <adr>, 0x03, #Bytes, Reg0Hi, Reg0Lo, Reg1Hi, Reg1Lo, CRC1, CRC2

Example to read P_IST from motor with address 1, values in decimal:
1, 3, 0, 20, 0, 2, NN, MM (NN and MM are the CRC-16 bytes)

Write Multiple Register operation:

Request: <adr>, 0x10, RegHi, RegLo, CountHi, CountLo, NBytes, Val0Hi, Val0Lo, ..., CRC1, CRC2
Offset: [0] [1] [2] [3] [4] [5] [6] [7] [8]
Reply: <adr>, 0x10, RegHi, RegLo, CountHi, CountLo, CRC1, CRC2

Example to write P_SOLL to motor with address 1, values in decimal:
1, 16, 0, 6, 0, 2, 4, bb, aa, dd, cc, NN, MM (NN and MM are the CRC-16 bytes)

This would write a 32-bit hexadecimal value of ddccbbaa – note the byte-packing.

